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Problem Statement

We study a task allocation problem for a swarm of robots where a
target distribution of spatial coverage by the swarm is desired. We
model the population dynamics of the robots using a set of
advection reaction diffusion partial differential equations (PDEs). The
task allocation problem is then framed and solved as an optimal
control problem.

Microscopic Model

- Agent primitives based on stochastic differential equation formalism

- Robots’ changes in state are modeled as a Chemical Reaction Network
(CRN) in which the species are F, a flying robot; H;, a robot that is

hovering over a flower of type j; and Vj, an instance of a robot visit to a

flower of type k()
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- Robot i has position x.(t) = [x;(t) y,(t)]" at time L.

- Time-dependent velocity field v(t) = [v,(t) v,(t)]"

- Robots’ motion over time step At modeled using the standard-form
Langevin equation:

X;i(t +Ar) —xi(1) = v(t)Ar + (2DA) V2 Z (1)

Macroscopic Model

- () € R? is an open bounded subset with Lipschitz continuous
boundary dQ). Q = Q X (0,T) and X = 9Q x (0, T).
n € R is the outward normal to 9.

- There are n¢ types of flowers.

- Hi: Q — {0,1} are indicator functions that model the presence
or absence of flower type i over the domain ().

-yv1(X, 1), vy, (X, t) and y3 (X, t) are the states representing the
density fields of flying robots, hovering robots and flower visits
at (x,t) € Q.
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Optimal Control Problem
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- Unique weak solution exists satistfying the PDE
as an equality in Y* = L#(0, T; X*).Here X = V x L#(Q)?
and V = H1(Q).

- Existence of optimal control can be proven using standard
arguments based on weak compactness of closed bounded
sets in the corresponding infinite dimensional spaces and
embedding arguments.

- Directional Derivatives of the control to state map exist along
directions h € L*(0,T)™*2,

- Adjoint equation characterizes the first order necessary
conditions for the optimal controls:
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Simulation Results
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The top-left figure is a snapshot of the robot
states for a sample test case.

The bottom-left figure shows the optimized
control parameters for a test case with two
flower types and a spatially non-uniform target
distribution of robot activity.

The bottom-right figure shows the optimized
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Results of the two test cases from microscopic and macroscopic simulations. The first case (left)
corresponds to a non-uniform target distribution. The second case (right) requires only the two rightmost
crop rows to be pollinated.

This framework can also be used to map features of interest when the task spatial
distribution (indicator functions H;) is not known a priori [2]
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